High-Level Expression of Pro-Form Lipase from Rhizopus oryzae in Pichia pastoris and Its Purification and Characterization

نویسندگان

  • Jian-Rong Wang
  • Yang-Yuan Li
  • Shu-De Xu
  • Peng Li
  • Jing-Shan Liu
  • Dan-Ni Liu
چکیده

A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL) was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL) was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168 h induction with methanol in a 50-L bioreactor. After fermentation, the supernatant was concentrated by ultrafiltration with a 10 kDa cut off membrane and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. The optimum pH and temperature of the rProROL were pH 9.0 and 40 °C, respectively. The lipase was stable from pH 4.0 to 9.0 and from 25 to 55 °C. The enzyme activity was enhanced by Ca(2+) and inhibited by Hg(2+) and Ag(+). The lipase showed high activity toward triglyceride-Tripalmitin (C16:0) and triglyceride-Trilaurin (C12:0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production

BACKGROUND Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However,...

متن کامل

Combined Strategies for Improving the Production of Recombinant Rhizopus oryzae Lipase in Pichia pastoris

We have developed a yeast Pichia pastoris system for the high-level expression of recombinant Rhizopus oryzae lipase (ROL), which is a potentially effective catalyst in the solvent-free production of biodiesel fuel. In the glycerol fed-batch phase, the combination of the dissolvedoxygen-stat and gradient-control glycerol feeding strategies resulted in a higher cell biomass in the P. pastoris cu...

متن کامل

Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris.

The lipases of the Rhizopus species family are important and versatile enzymes that are mainly used in fat and oil modification due to their strong 1,3-regiospecificity. Inexpensive synthetic medium was used for the production of Rhizopus oryzae lipase in the methylotrophic yeast Pichia pastoris. Methanol accumulation inside the bioreactor has previously been shown to negatively influence the p...

متن کامل

Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris

BACKGROUND The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lip...

متن کامل

Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris

The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013